麻省理工学院:《算法导论》(英文版) Lecture Prof. Charles E. Leiserson

Introduction to algorithms 6.046J/18.401J/SMA5503 Lecture l Prof. charles e. leiserson
Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 1 Prof. Charles E. Leiserson

Welcome to introduction to Algorithms, Fall 2001 Handouts 1. Course Information 2. Calendar 3. Registration (MIT students only) 4. References 5. Objectives and Outcomes 6. Diagnostic survey Day 1 Introduction to Algorithms L12
Day 1 Introduction to Algorithms L1.2 Welcome to Introduction to Algorithms, Fall 2001 Handouts 1. Course Information 2. Calendar 3. Registration (MIT students only) 4. References 5. Objectives and Outcomes 6. Diagnostic Survey

Course information 1. Staff 8. Website 2. Distance learning 9. Extra help 3. Prerequisites 10. Registration MIT only) 4. Lectures 11. Problem sets 5. Recitations 12. Describing algorithms 6. Handouts 13.G1 rading policy 7. Textbook(CLRS) 14. Collaboration policy Course information handout Day 1 Introduction to Algorithms 1.3
Day 1 Introduction to Algorithms L1.3 Course information 1. Staff 2. Distance learning 3. Prerequisites 4. Lectures 5. Recitations 6. Handouts 7. Textbook (CLRS) 8. Website 9. Extra help 10.Registration (MIT only) 11.Problem sets 12.Describing algorithms 13.Grading policy 14.Collaboration policy ¾ Course information handout

Analysis of algorithms The theoretical study of computer-program performance and resource usage What's more important than performance? modularity o user-friendliness correctness programmer time maintainability simplicity functionality extensibility robustness reliability Day 1 Introduction to Algorithms
Day 1 Introduction to Algorithms L1.4 Analysis of algorithms The theoretical study of computer-program performance and resource usage. What’s more important than performance? • modularity • correctness • maintainability • functionality • robustness • user-friendliness • programmer time • simplicity • extensibility • reliability

Why study algorithms and performance? Algorithms help us to understand scalability Performance often draws the line between what is feasible and what is impossible Algorithmic mathematics provides a language for talking about program behavior The lessons of program performance generalize to other computing resources Speed is fun! Day 1 Introduction to Algorithms 1.5
Day 1 Introduction to Algorithms L1.5 Why study algorithms and performance? • Algorithms help us to understand scalability. • Performance often draws the line between what is feasible and what is impossible. • Algorithmic mathematics provides a language for talking about program behavior. • The lessons of program performance generalize to other computing resources. • Speed is fun!

The problem of sorting Input: sequence(a1, a2,.,an,of numbers Output: permutation (al, a2,..., an such that a1≤a2≤…≤an Example: put:824936 Output: 23 4689 Day 1 Introduction to Algorithms L16
Day 1 Introduction to Algorithms L1.6 The problem of sorting Input: sequence 〈a1, a2, …, an〉 of numbers. Example: Input: 8 2 4 9 3 6 Output: 2 3 4 6 8 9 Output: permutation 〈a'1, a'2, …, a'n〉 such that a'1 ≤ a'2 ≤ … ≤ a'n

Insertion sort INSERTION-SORT(A, n) D Al.n forj←2ton do key←Aj pseudocode while i>0 and a[i> key doA[i+1]←A[d Ai+1=key sorted ey Day 1 Introduction to Algorithms 17
Day 1 Introduction to Algorithms L1.7 Insertion sort INSERTION-SORT (A, n) ⊳ A[1 . . n] for j ← 2 to n do key ← A[ j] i ← j – 1 while i > 0 and A[i] > key do A[i+1] ← A[i] i ← i – 1 A[i+1] = key “pseudocode” i j key sorted A: 1 n

Example of insertion sort 824936 Day 1 Introduction to Algorithms
Day 1 Introduction to Algorithms L1.8 Example of insertion sort 824936

Example of insertion sort 824936 Day 1 Introduction to Algorithms 1.9
Day 1 Introduction to Algorithms L1.9 Example of insertion sort 824936

Example of insertion sort 824 36 284 99 36 Day 1 Introduction to Algorithms L1.10
Day 1 Introduction to Algorithms L1.10 Example of insertion sort 824936 284936
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 桂林电子科技大学:《可编程ASIC原理》课程教学资源(实验指导书)实验二 波形输入与仿真实现.pdf
- 桂林电子科技大学:《可编程ASIC原理》课程教学资源(实验指导书)综合、设计性实验指导书.pdf
- 桂林电子科技大学:《可编程ASIC原理》课程教学资源(实验指导书)封面.pdf
- 桂林电子科技大学:《可编程ASIC原理》课程教学资源(实验指导书)附录GW48EDA系统使用说明.pdf
- 桂林电子科技大学:《可编程ASIC原理》课程教学资源(实验指导书)实验一 可编程ASIC使用初步.pdf
- 桂林电子科技大学:《可编程ASIC原理》课程教学资源(实验指导书)实验五 A/D采样电路设计.pdf
- 桂林电子科技大学:《可编程ASIC原理》课程教学资源(实验指导书)实验四 只读存储器设计.pdf
- 桂林电子科技大学:《可编程ASIC原理》课程教学资源(实验指导书)实验三 序列信号发生器与序列信号检测器的设计.pdf
- 桂林电子科技大学:《可编程ASIC原理》课程教学资源(实验指导书)实验六 数字电压表设计.pdf
- 《数字平面艺术设计》课程教学资源(试卷习题)试题库.doc
- 华中科技大学:《MATLAB语言与控制系统仿真》课程教学资源(PPT课件讲稿)第四章 控制系统的分析方法.ppt
- 华中科技大学:《MATLAB语言与控制系统仿真》课程教学资源(PPT课件讲稿)第五章 SIMULINK仿真基础.ppt
- 华中科技大学:《MATLAB语言与控制系统仿真》课程教学资源(PPT课件讲稿)第二章 matlab语言基础.ppt
- 华中科技大学:《MATLAB语言与控制系统仿真》课程教学资源(PPT课件讲稿)第三章 控制系统的数学描述与建模.ppt
- 华中科技大学:《MATLAB语言与控制系统仿真》课程教学资源(PPT课件讲稿)第一章 计算机辅助设计与仿真技术概述.ppt
- 沈阳师范大学:《数据库应用基础》应试指导.ppt
- 沈阳师范大学:《数据库应用基础》课堂测试.ppt
- 沈阳师范大学:《数据库应用基础》第12章 数据库应用.ppt
- 沈阳师范大学:《数据库应用基础》编程练习(1).ppt
- 沈阳师范大学:《数据库应用基础》第11章 文件.ppt
- 麻省理工学院:《算法导论》(英文版) Lecture 2 Prof erik demaine.pdf
- 麻省理工学院:《算法导论》(英文版) Lecture 3 Prof erik demaine.pdf
- 麻省理工学院:《算法导论》(英文版)Lecture 4 Prof. charles e. leiserson.pdf
- 麻省理工学院:《算法导论》(英文版)Lecture 5 Prof erik demaine.pdf
- 麻省理工学院:《算法导论》(英文版) Lecture 6 Prof erik demaine.pdf
- 麻省理工学院:《算法导论》(英文版) Lecture 7 Prof charles e. leiserson.pdf
- 麻省理工学院:《算法导论》(英文版) Lecture 8 Prof charles e. leiserson.pdf
- 麻省理工学院:《算法导论》(英文版) Lecture 9 Prof charles e. leiserson.pdf
- 麻省理工学院:《算法导论》(英文版) Lecture 10 Prof erik demaine.pdf
- 麻省理工学院:《算法导论》(英文版) Lecture 11 Prof erik demaine.pdf
- 麻省理工学院:《算法导论》(英文版) Lecture 12 Prof erik demaine.pdf
- 麻省理工学院:《算法导论》(英文版)Lecture 13 Prof erik demaine.pdf
- 麻省理工学院:《算法导论》(英文版) Lecture 14 Prof charles e. leiserson.pdf
- 麻省理工学院:《算法导论》(英文版) Lecture 15 Prof charles e. leiserson.pdf
- 麻省理工学院:《算法导论》(英文版) Lecture 16 Prof charles e. leiserson.pdf
- 麻省理工学院:《算法导论》(英文版)Lecture 17 Prof erik demaine.pdf
- 麻省理工学院:《算法导论》(英文版) Lecture 18 Prof erik demaine.pdf
- 麻省理工学院:《算法导论》(英文版) Lecture 19 Prof erik demaine.pdf
- 麻省理工学院:《算法导论》(英文版) Lecture 20 Prof erik demaine.pdf
- 麻省理工学院:《算法导论》(英文版) Lecture 21 Prof charles e. leiserson.pdf