《高等数学》课程教学资源:第八章(8.9)多元函数微分学 习题课

多元函数微分学习题课
多元函数微分学 习题课

、主要内容 平面点亮 多元函数概念 和区域 多元函数 极限远箕 的极限 多元连续函数 多元函数 的性质 连续的概念
一、主要内容 平面点集 和区域 多元函数概念 多元函数 极 限 运 算 的极限 多元函数 连续的概念 多元连续函数 的性质

全微分 方向忌数 全微分 概念 为应用 复合函数 高阶偏导数 求导法则 偏导数 全微分形式 概念 隐函数 的不变性 求导法则 微分法在 多元函数的极值 几何上的应用
全微分 概念 偏导数 概念 方向导数 全微分 的应用 复合函数 求导法则 全微分形式 的不变性 高阶偏导数 隐函数 求导法则 微分法在 多元函数的极值 几何上的应用

1、多元函数的极限 说明:(1)定义中P→P的方式是任意的; (2)二元函数的极限运算法则与一元 函数类似 存在性 定义,夹逼定理 不存在 特殊路径、两种方式 求法 运算法则、定义验证、夹逼定理 消去致零因子、化成一元极限等 2、多元函数的连续性 lim f(p)=f(Po) P→)P
1、多元函数的极限 说明:(1)定义中 P → P0 的方式是任意的; (2)二元函数的极限运算法则与一元 函数类似. 存在性 ——定义,夹逼定理 不存在 ——特殊路径、两种方式 求法 ——运算法则、定义验证、夹逼定理 消去致零因子、化成一元极限等 2、多元函数的连续性 lim ( ) ( ) 0 0 f P f P P P = →

3、偏导数概念 定义、求法 偏导数存在与连续的关系 高阶偏导数—纯偏导、混合偏导 4、全微分概念 定义 可微的必要条件可微的充分条件 利用定义验证不可微
3、偏导数概念 定义、求法 偏导数存在与连续的关系 高阶偏导数——纯偏导、混合偏导 4、全微分概念 定义 可微的必要条件 可微的充分条件 利用定义验证不可微

多元函数连续、可导、可微的关系 函数连续】函数可导 函数可微 偏导数连续
多元函数连续、可导、可微的关系 函数可微 函数连续 偏导数连续 函数可导

5、复合函数求导法则 z=∫(u,v),l=u(x,y),ν=ν(x,y) 十 ax au ax ay ax oz a au oz av 2×2法则 ay au ay av ay “分道相加,连线相乘” 法则的推广任意多个中间变量,任意多 个自变量 如何求二阶偏导数
5、复合函数求导法则 z = f (u,v), u = u(x, y), v = v(x, y) x v v z x u u z x z + = y v v z y u u z y z + = 22法则 “分道相加,连线相乘” 法则的推广——任意多个中间变量,任意多 个自变量 如何求二阶偏导数

6、全微分形式不变性 无论z是自变量、"的函数或中间变量u、v 的函数,它的全微分形式是一样的 + OL 7、隐函数的求导法则 (1)F(x,y)=0 (2)F(x,y,z)=0 01,≠ z F(x,y,z)=0 ax F,ay F (3) G(x,y,z)=0 (x,y,L,v)=0 G(,y, u, v)=0
6、全微分形式不变性 无论 是自变量 的函数或中间变量 的函数,它的全微分形式是一样的. z u、v u、v dv v z du u z dz + = . 7、隐函数的求导法则 (1) F(x, y) = 0 (2) F(x, y,z) = 0 = = ( , , ) 0 ( , , ) 0 (3) G x y z F x y z = = ( , , , ) 0 ( , , , ) 0 (4) G x y u v F x y u v z y z x F F y z F F x z = − = −

求隐函数偏导数的方法 ①公式法②直接法③全微分法 8、微分法在几何上的应用 (1)空间曲线的切线与法平面 (2)曲面的切平面与法线 求直线、平面的方程 定点(过点)、定向(方向向量、法向量) 曲线:参数式,一般式给出 曲面:隐式、显式给出
①公式法 ②直接法 ③全微分法 8、微分法在几何上的应用 (1) 空间曲线的切线与法平面 (2) 曲面的切平面与法线 求直线、平面的方程 定点(过点)、定向(方向向量、法向量) 曲线:参数式,一般式给出 曲面:隐式、显式给出 求隐函数偏导数的方法

9、方向导数与梯度 定义 计算公式(注意使用公式的条件) 梯度的概念—向量 梯度与方向导数的关系 10、多元函数的极值 极值、驻点、必要条件 充分条件(B2-AC<0 求函数z=f(x,y)极值的一般步骤
10、多元函数的极值 9、方向导数与梯度 定义 计算公式(注意使用公式的条件) 梯度的概念——向量 梯度与方向导数的关系 极值、驻点、必要条件 充分条件 ( 0) 2 B − AC 求函数z = f (x, y)极值的一般步骤:
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《高等数学》课程教学资源:第八章(8.7)微分法在几何上的应用.ppt
- 《高等数学》课程教学资源:第八章(8.6)多元函数极值.ppt
- 《高等数学》课程教学资源:第八章(8.5)隐函数的求导法.ppt
- 《高等数学》课程教学资源:第八章(8.4)复合函数求导法则.ppt
- 《高等数学》课程教学资源:第八章(8.3)全微分.ppt
- 《高等数学》课程教学资源:第八章(8.2)偏导数.ppt
- 《高等数学》课程教学资源:第八章(8.1)多元函数微分学相关概念.ppt
- 《高等数学》课程教学资源:第四章(4.3)换元积分法.ppt
- 《高等数学》课程教学资源:第四章(4.2)几种特殊类型函数的积分.ppt
- 《高等数学》课程教学资源:第四章 习题课.ppt
- 《高等数学》课程教学资源:第四章 不定积分的概念和性质.ppt
- 《高等数学》课程教学资源:第四章(4.1)分部积分法.ppt
- 高等学校计算机专业教材:《离散数学》课程教学资源(PPT课件讲稿)绪论.ppt
- 高等学校计算机专业教材:《离散数学》课程教学资源(PPT课件讲稿)第四章 关系.ppt
- 高等学校计算机专业教材:《离散数学》课程教学资源(PPT课件讲稿)第六章 代数系统.ppt
- 高等学校计算机专业教材:《离散数学》课程教学资源(PPT课件讲稿)第五章 函数.ppt
- 高等学校计算机专业教材:《离散数学》课程教学资源(PPT课件讲稿)第二章 谓词逻辑.ppt
- 高等学校计算机专业教材:《离散数学》课程教学资源(PPT课件讲稿)第三章 集合.ppt
- 高等学校计算机专业教材:《离散数学》课程教学资源(PPT课件讲稿)第七章 图论.ppt
- 东南大学远程教育:《离散数学》课程教学资源(PPT课件讲稿)第一章 命题逻辑.ppt
- 《高等数学》课程教学资源:第八章(8.8)方向导数与梯度.ppt
- 《高等数学》课程教学资源:第五章 定积分习题课.ppt
- 《高等数学》课程教学资源:第五章 定积分(5.1)定积分的分部积分法.ppt
- 《高等数学》课程教学资源:第五章 定积分(5.2)定积分的性质.ppt
- 《高等数学》课程教学资源:第五章 定积分(5.3)定积分的换元法.ppt
- 《高等数学》课程教学资源:第五章 定积分(5.4)定积分的概念.ppt
- 《高等数学》课程教学资源:第五章 定积分(5.5)广义积分.ppt
- 《高等数学》课程教学资源:第五章 定积分(5.6)微积分基本公式.ppt
- 《高等数学》课程教学资源:第六章(6.1)定积分应用.ppt
- 《高等数学》课程教学资源:第六章(6.2)体积.ppt
- 《高等数学》课程教学资源:第六章(6.3)定积分在物理学中的应用.ppt
- 《高等数学》课程教学资源:第六章 定积分应用习题课.ppt
- 《高等数学》课程教学资源:第六章(6.4)定积分的几何应用.ppt
- 《高等数学》课程教学资源:第三章(3.1)Taylor公式.ppt
- 《高等数学》课程教学资源:第三章(3.2)函数图形的描绘.ppt
- 《高等数学》课程教学资源:第三章(3.3)函数的极值及其求法.ppt
- 《高等数学》课程教学资源:第三章(3.4)曲率.ppt
- 《高等数学》课程教学资源:第三章 中值定理.ppt
- 《高等数学》课程教学资源:第三章(3.1)曲线的凹凸与拐点.ppt
- 《高等数学》课程教学资源:第三章(3.2)最值问题.ppt